
NONLINEAR EXCHANGE OF MASS BETWEEN A GAS 

AND A LIQUID RUNOFF FILM. 

2. ASYMPTOTIC ANALYSIS 

Chr. Boyadjiev and E. Toshev UDC 532.72:532.529 

We propose an asymptotic method for the solution of the problem concerned with the determination 
of the rate of  nonlinear mass exchange between a gas and a runoff fluid film, when the process is 
limited to the transport of mass in the gaseous phase. We have derived equations for the distributions 
of  velocities and concentrations both in the liquid and the gas. The results from asymptotic theory 
are compared with the results of numerical analysis and against the experimental data. 

It was demonstrated in the first part of [ 1 ] that in order to determine the distribution of velocities and concentrations 
in a gas and in a liquid in the case of nonlinear mass exchange between the gas and the runoff  liquid film, limited to 
the transfer of mass in the gaseous phase, it is the following problem that has to be solved: 

r + ] - - r 1 6 2  = o, ~ .  + e r  = o; 
8 

d) (0) = 03 ~,  (0), (I)' (0) 30~ (I)' (oo) = 2 
8 8 8 

(o) = 1, ~, (~,,) = 0. 

(1) 

Here the parameters 01 and 03 are small for those cases of practical interest. This enables us to f ind the solution for (1) 
by the method of perturbations, representing the unknown functions in the form of the following series: 

A = Ao + 01A 1 --[- 03A 3 --~ 012All @ 0gA3z --~ 0103A13 "3 t- .. . .  

where A is the vector function A = (~, fit). 
Zeroth Approximations. These approximations are obtained from (1), provided that we assume that 01 = 03 ffi 

0. The derived problems have known solutions [2, 3]: 

where ~o o is the ,~c [4, 5] function: 

~o (TI) = f (Z), ~o 0q) = 1 - -  

2 
z = - -  ~, 

P, 

Z 

1 !E(e ,  p)dp, 
% (2) 

% = i E ( e ,  p)dp,~ 3,01Sc-~ 
o 

E(e, p)-----exp - - ~ -  [(s) ds , e = - ~ c ,  

while f is the solution of the problem 
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The function ~o in (6) and its derivatives. 

The function ~o in (9) and its derivatives. 

The function ~o in (15) and its derivatives. 

2['" -{-ff" = O; 

f ( O )  = f ' ( O )  = O, f ' ( , ~ )  = 1, 
(3) 

which has been tabulated in [6]. 
Effect  of  Kinematic  Phase Interaction. Kinematic phase interaction expresses the continuity of velocities at the 

phase boundary and is taken into consideration by the parameter 01. If  we substituted the asymptotic series (A) into (1) 
and if we equate terms proportional to 01 , in first approximation we obtain the familiar problems [2, 3], whose solutions 
have the form 

m,(n) = 2-~-f' (z), c, = f"(o) = o,332o5; 

WI(~I)= 3 I I _ E ( e ,  z ) 1 7 i - - - -  j E (e, p) dp . 
2 a %  % o 

(4) 

The second approximation is obtained if those terms proportional to 012 are equated. Thus, we obtain the known problems 
[2, 3] whose solutions have the form 

9 F(z), (I)11(~) = T 
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ufn (n) = 8q,~ 4r "[" 

-Jr" 9e= * p F (s) ds] (e, p) + 8% I' [ Y E dp 
0 0 

9e'~pl ) f 32r162 k" (~, p) ap + 

9 
4r 2 [ I - -  E (8, z)] - -  

98& 
.~ p (p) E (~, p) dp, 

32~2% o 

(5) 

where ~o 1 and ~o~. are Sc [4, 5] functions: 

r = ? [2 (p) E (e, p) dp,~ 3,011S'c -1'6~ 
0 

cp i [ ~  F (s)ds] E (e, p)dp ,.w 3,052 S c - "  28a, 
0 0 

while F is the solution of the problem 

2F'" q-/F" -Jr- ["F - 1 f,v .... 
t~ g 

F (0) = F' (0) = F' (~ )  = O, 

which has been tabulated in [6]. 

Effect of Nonlinearity. The nonlinear effect is associated with the concentration gradient, i.e., it depends significantly 
on the value of the parameter 03. When 0 s < 10 -1 we observe slight nonlinearity and its effect serves as the first approximation 
with respect to the parameter 03 . If we equate the terms proportional to 03 , we obtain the familiar problems [7] whose 
solutions have the form 

= ~ r (s) ds] E (8, p) dp - -  r E (e, p) dp, 
~r q~ o ~ (6) 

where ~o s is the Sc function and is defined in Table 1: 

p 

0 0 

while ~o is the solution to the problem 

2qr + re" + y r  = o; 

cp(o) = 1, cp' (0) = r ( o o ) =  O, 

obtained by a numerical method (Fig. 1). 
Pronounced nonlinearity is observed when 0 a < 10 -1 and is taken into consideration by the parameter 0s 9. This 

effect is the second approximation with respect to the parameter 0 3 and is determined from (1) after having equated the 
terms proportional to 0a2: 

cD~" + ! ( ~ o ~ L  + % ~ o  + cD3cD~) = O; 
8 

o3~ (o) = - ! v ;  (0) -- 2,p____~_, cvL (0) -- o L  (o~) -_ 0. 
8 82q~ ' 

After substitution of (2) and (6) into (7) we obtain 

c~;'/ + ! fc& + + f"o~ = 16 ~,,. 
e e7~o 

The solution for (8) has the form 

(7) 

(8) 
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TABLE 1. Values of the Functions ~o 3, 
Obtained Through Integration and by 
Means of an Approximation Relationship 

S~ ~s 6,56 S~ - 0 , 8  

0,1 
0,2 
0,5 
0,8 
1,0 
1,2 
1,5 
1,8 
2,0 
5,0 

10,0 

32,53 
22,93 
11,58 
7,86 
6,56 
5,66 
4,74 
4,11 
3,79 
1,90 
1,15 

41,39 
23,76 
11,42 
7,84 
6,56 
5,67 
4,74 
4,10 
3,77 
1,8t 
1,04 

TABLE 2. Values of the Functions 
~os3 ' Obtained Through Integration 
and by Means of an Approximation 
Relationship 

ge 

0,1 
0,2 
0,5 
0,8 
1,0 
1,2 
1,5 
1,8 
2,0 
5,0 

10,0 

�9 z8 24S~-- 1 ,3 

263,80 478,86 
163,97 194,48 
59,37 59,09 
32,12 32,08 
23,99 24,00 
18,94 18,93 
14,24 14,17 
11,31 11,18 
9,91 9,75 
3,28 2,96 
1,48 1,20 

TABLE 3. Values of the Functions 
~ozs, Obtained Through Integration 
and by Means of an Approximation 
Relationship 

0,1 
0,2 
0,5 
0,8 
1,0 
1,2 
1,5 
1,8 
2,0 
5,0 

10,0 

~"~3 a 0,326~'r ,63 

4,29 13,91 
2,66 4,49 
O, 924 1,009 
O, 462 O, 469 
0,326 0,326 
0,243 0,242 
O, 168 O, 168 
0,123 0,125 
0,103 0,105 
0,0186 0,0236 
0,0040 0,0076 

where ~o is the solution of the problem 

2q~_~3 4 
% ~  (~) = ~ ~ (z) ~ ~(z), 

(9) 

2~,,, + / ~ , ,  + / , ' ~  = W',  

(o) = u  (o) = ~ '  (o~) = o, 

obtained numerically (Fig. 2). 

Let us write out the distribution of concentrations: 

�9 ~3 + ,  (a)o,V~3 + -33~o + %~,~) = o; 

�9 3~ (o) = ~3~ ( ~ )  = o. 

Taking into consideration (2), (6), and (9), from (10) we find that 

( lo)  
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TABLE 4. Values of the Function 
%s, Obtained Through Integration 
and by Means of an Approximation 
Relationship 

TABLE 5. Values of the Functions 
~ s ,  Obtained Through Integration 
and by Means of an Approximation 
Relationship 

0,I 
0,2 
0,5 

0,8 
1,0 
1,2 
1,5 
1,8 
2,0 
5,0 

10,0 

9,62 
6, 19 
2,41 
1,34 
1,00 
0,794 
0,593 
0,466 
0,405 
0,119 
0,047 

19,95 
8,10 
2,46 
1,34 
1,00 
0,789 
0,590 
0,466 
O, 406 
O, 123 
0,050 

0, I 
0,2 
0,5 
0,8 
1,0 
1,2 
1,5 
1,8 
2,0 
5,0 

i0,0 

10,58 
8,54 
5,77 
4,63 
4,18 
3,84 
3,47 
3,19 
3,05 
2,05 
1,54 

~ ~o ~q4 8~o ~ ~ r ,. t~ ~ 
o 

12,07 
8,76 
5,75 
4,63 
4,18 
3,84 
3,47 
3,19 
3,04 
1,99 
1,45 

(s) ds.] E (e, z). ( l l )  

The solution to (11) has the form 

Vas ('q5 = ( 2%~ 

+ ~ (s) cls] e (8, p) a p  - - ,  

where ~s~ and ~ss are the Sc functions: 

and are defined in Tables 2 and 3. 

- - ~ - } -  2q~4o + e2q~ ] ! E(e' p) dp + 

1 z p 

o o eZtpo ~ 

i p qha= [S eP(s)ds] 9 S (e, p)dp~, 24~c -',3, 
o o 

p 
~33 = [~(s)ds] E(e, p)dp,,.~0,326~c-', 63 

o o 

z p ![! 
(12) 

Strong Interaction Effect.  For the cases in which 01 > 10-1and 0 s > 10-xit is essential that we take into consideration 
in (1) the terms proportional to 0103: 

I~);;' --~ ! ((I)o(~l' 3 .~ (I)13(I"); -~- (I)1(~; + (I)3(I);) = O, 
8 

r (o) = - ! v~  (o), ~ i ~  (o5 = ~ h  ( ~ )  = o. 
8 

(13) 

Having substituted (2), (4), and (6) into (13), we obtain 

4 . r  + 1~ t ~ ,  + - J -  t ~1~ - 

3 
~1~(0) = ~2~0  2 

12 
- -  ( Y ' , V '  + f'"q~); 
cceSq% 

�9 ;~ (o5 = ~>~3 (oo) = o. 
(14) 

The solution of (14) has the form 

3 3 = 
~ ( ~ )  - ~-----To ~ (z) - ~ - - -~  ~ (zS, (15) 

where ~ is the solution of the problem 2 ~ "  + f~"  + f"~ = f'~o" + f"~o, ~(0) = ~'(0) = ~'(oo) = 0, numerically (Fig. 3). 
Let us find the distribution of the concentrations 

(16) 
�9 7~ + 8 ( ~ o ~ 3  + r  + ~ 1 %  + r  = 0; ~13(0) = ~ 1 ~ ( ~ )  = 0. 

Bearing in mind (2), (4), (6), and (15), from (16) we obtain 
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6 
- -  ~ (z) ~ e ~  ~ (z) - 

~o (z) ~(s) ds (z) ~ ~ (z), (z) E(~, z); 
o a~Oo 

~v~ (o) = ~3 (oo) = o. 

(17) 

The solution of (17) has the form 
' - -  z 

! E p) dp + 

+ --czqD~ o "' q~ (s) p) dp ----2~z~ 2 ,p p) dp + (18) 

jf 3; 3q~_.___.A__3 
+ ~ E ( e ,  .) qo(s)ds--  2cr ,p(p)S(~, p )dp+ 2~q9~ [ 1 - - E ( e ,  z)], 

2czqg~ o o 

where ~o13 and ~oz3 are the Sc functions: 

~13 = ~ (s) ds E (e, p) dp ~.~ Sc- 1,3, 
0 0 

q~3 : i q~(P)E( ~, p)dp,~, 4,18 S'c-O, 4~ 
0 

and are defined in Tables 4 and 5. 
Effect of Nonlinear Mass Transfer in the Gas on the Hydrodynamics of the Film. The nonlinear effects in the 

gas affect film hydrodynamics, since it was demonstrated in [1] that the distribution of  velocities and thicknesses for 
the film depends on the distribution of the velocity and concentration in the gas. 

The hydrodynamics of the film depends on the small parameter 09 which is found in [1] from the condition of 
continuity for the stress tensor at the phase boundary and takes into consideration the dynamic interaction of the liquid 
and the gas. Maintaining the level of accuracy for the approximations derived so far, we obtain the distribution for the 
velocities within the liquid in first approximation of the small parameter 02: 

3 Y 2 + [ 3 H + 0 2 - ~  e O)~(O)]Y, 
z J - - - - 7  v-2 

09) 
1 [3~,_o~ ~ .~(o)] y~, v=-T 

where H is found from 

H 3 = 1 - -  02 ~ ~Oo (0)/-/z -t- 0003 [go (0) + 01W~ (0) -k- 0zW~ ( 0 ) ] ( ] / ~  - -  -VX). 
8 - r  

For purposes of determining H it is convenient to use the expansion 

2 H = 1 + 02H 2 + 03H 3 + 03H33 + 0103H13 + ... 

( 2 0 )  

(21) 

If we substitute (21) into (20) and equate terms with identical powers of 92, 03, 032 and 9z03, bearing in mind 
(2), (4), and (6), we find 

I43 = 200 0 / Z - :  _ VX) ,  
H2 = 6e -VX ' 3e% 

402 (-V'Z-~- V"X) 2 20oq% (-V-s -Vx), (22) 
f ' / 3 3  - -  9e2q~ 3ecp~ 

o3 . (a/L-S.  - v - 2 ) .  
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Substituting (2) and (22) into (19) and (21), in final form we obtain 

U = ----~3 Y~ + ( 3H + ~0~ ) 

V-- 1 ( 3H'-- ~0~ yz 
2 ~, 2eX ] /~  I 

and we determine H: 

~o, 2OoO~ (V'L--~. - V - ~ ) -  
//= I -- 6e V~ 28% 

9:~ (Vi-j- ~Y)~ + ae~] 

Oo - o~o~ =~--~ (V~-f~ - V~). 

Distribution of  Velocit ies  in the Gas. The above-derived results enable us to write expressions for the distribution 
of  the velocities in the gas, as follows: 

301 ,, t_7 (x, ?) = ! cD' (~) = : '  (z) + ~ : (z) + 
2 

o 
9 

- F' 203 20~% 402 ~, 30103 r 30a03 - q--,941 (z) - -  - -  q: (z) q- ~ qD' (z) - -  - -  (z)-~ - -  (z) - - - - ~ ' ( z ) ,  
:% e2Cpo 3 ~'cp~ 2 ~ e ~  2 ~ %  

V(X, }7)= 2 ~  (ncI) '--  (D) -- - -  rlft (z) -- f (z) + 
2 V ~  

(23) 
- } - ~  --e- ~ff ( z ) - -  (z) _ ~  T ~ I F  ( z ) - - F ( z )  --[- 

J 

Effect  of  Mass -Exchange  Direction on the Rate of  Mass Transfer. The rate of  mass transfer in the case under 

consideration is determined by the Sherwood number from [1]. In the new variables this expression assumes the form 

P* V--~e ~ '  (0), (24) 

where ~'(0) can be obtained from (2), (4)-(6), (12), and (18): 

2 301 203q% { 9eq92 9 
~v, (o) = ~ + ~ + ~ + o~ + - - 

__ ~ ~ [ 4r 2 2e~zq~ 
_ . .  (25) 

" " 2 

It is directly evident from (25) that the nonlinear effects  increase the rate of  absorption (0 s > 0) and reduce the 
rate of  desorption (0 s < 0) relative to the rate that is obtained from the linear theory o f  mass transport (0 s = 0). If we  
express the Sherwood number and the mass-transfer coeff ic ients  in terms o f  Sh+ and k+ in the case o f  absorption (gs 
> 0), in terms o f  S_ and k_ in the case of  desorption (03 < 0), and in terms of  Sh o and k o in the cases in which 0 s = 0 (i.e., 
with small concentration gradients, when  the rates of  absorption and desorption are virtually equal), then from (24) and 

(25) we can obtain 
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TABLE 6. Velocity of the Secondary Flow and the Rate of Mass Transport, Obtained 

by a Numerical Method and on the Basis of Expressions (23) and (25) 

03 0, ~ (0) ~a (0) _gr, (0) --gt a (0) 

0 
0,l 

---0,1 
0,2 

---0,2 
0,3 

' ~ 0 , 3  

0,O720 
0,0723 
0,0718 
0,0725 
0,0716 
0,0730 
0,0714 

0 
O, 0785 

--0,0682 
O, 170 

--0,128 
0,280 

--0,182 

0 
O, 0784 

--0,0687 
O, 166 

--0,128 
0,264 

--0,177 

0,730 
0,785 
0,682 
0,851 
0,641 
0,932 
O, 6O5 

0,738 
0,794 
0,690 
0,857 
0,650 
0,929 
0,618 

1 
Sh+ - -  Sho ~+--  k~ 1 q_ 03 eZqD~ (4eZq~ - -  eztP~ - -  4rP~ . 

ffh+-- Sh_ = k+-'-- ~--~_ = ~ 4% + 601 (3% - -  q~otpln - -  qb~l~) (26) 
cZqOo 

Expression (26), which is a direct consequence of the nonlinear theory of mass transfer, can be verified directly 
on the basis of experimental data for the coefficient of mass transfer in the absorption and desorption of a readily soluble 
gas in the presence of large and small concentration gradients. 

Comparison of the Asymptotic-Theory Results with the Results from Numerical Analysis and Against Experimental 
Data. Table 6 shows the results for the secondary-flow velocity 4(0) and the mass-transfer rate ~'(0) (obtained numerically) 
and the results ~ ( 0 )  and ~ ' (0 )  from asymptotic theory, obtained through expressions (23) and (25). We can see from 
the table that the accuracy of approximation for asymptotic theory is adequate for practical calculations of the kinetics 
of nonlinear mass transfer. 

The difference in the rate of mass transfer in the processes of absorption and desorption for readily soluble gases 
was observed experimentally by a number of authors [8-11 ]. In all of these cases this was explained by the Marangoni 
effect, i.e., the hydrodynamic effect resulting from initiation of a secondary flow whose velocity is tangential to the interphase 
surface. This effect is generated by the gradient of surface tension that is due to nonuniform distribution of temperatures 
and (or) concentrations at the interphase surface. In the present study we propose a theory which can explain these 
experimental results through the nonlinear effects resulting from the induced secondary flows whose velocity is normal 
to the phase boundary. Clarification of the mass-transfer mechanism in cases of intense mass exchange obviously calls 
for experimental data on absorption and desorption and the comparative analysis of these data by means of the theory 
of nonlinear mass transfer and the Marangoni effect. In this regard it is interesting also to determine the influence exerted 
by the effect of normal secondary flows (resulting from intense mass exchange) on the hydrodynamic stability of liquid 
and gas flows at the interphase surface. 
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